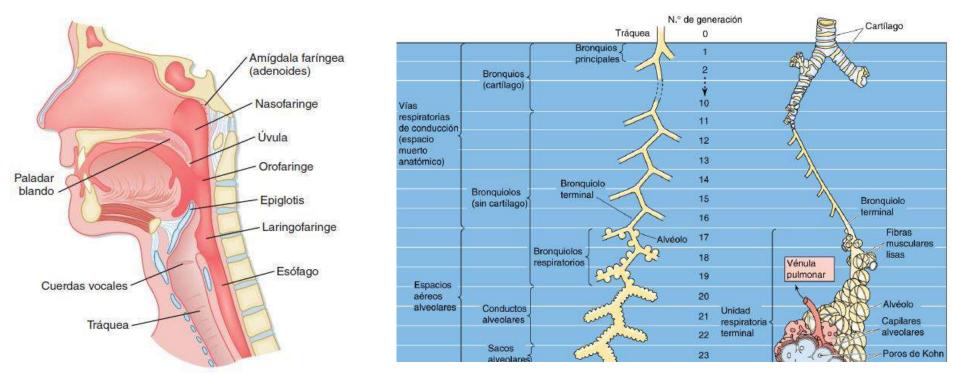


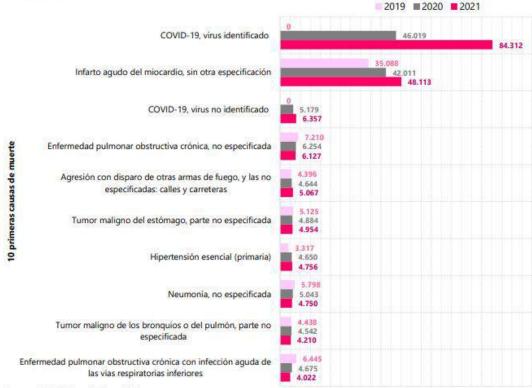
DETERMINANTES AMBIENTALES ASOCIADOS CON LA TRANSMISIÓN DE LOS VIRUS DE LAS INFECCIONES RESPIRATORIAS AGUDAS: UNA REVISIÓN SISTEMÁTICA



Sebastián Andrés Beltrán Prieto Medicina Universidad Militar Nueva Granada Ponencia 020-02

Semillero de Investigación en salud Investigación de Epidemiología y Salud Colectiva

1. Las Infecciones respiratorias agudas


Son patologías del tracto respiratorio que interfieren con la respiración y se presentan con una historia natural de la enfermedad homogénea (Savitha & Gopalakrishnan, 2018)

Boron, W.F. and Boupaep, E.L. (2016) Medical Physiology. 3rd Edition, Elsevier Publisher, Philadelphia.

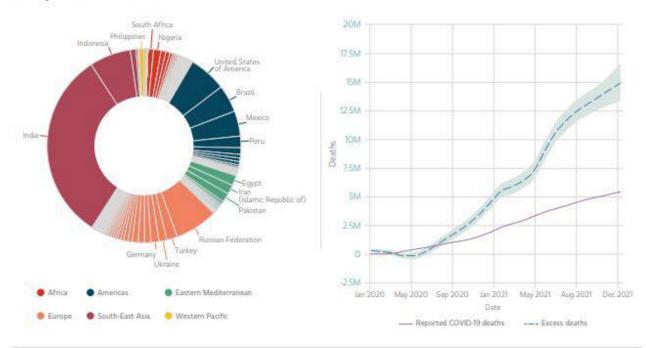
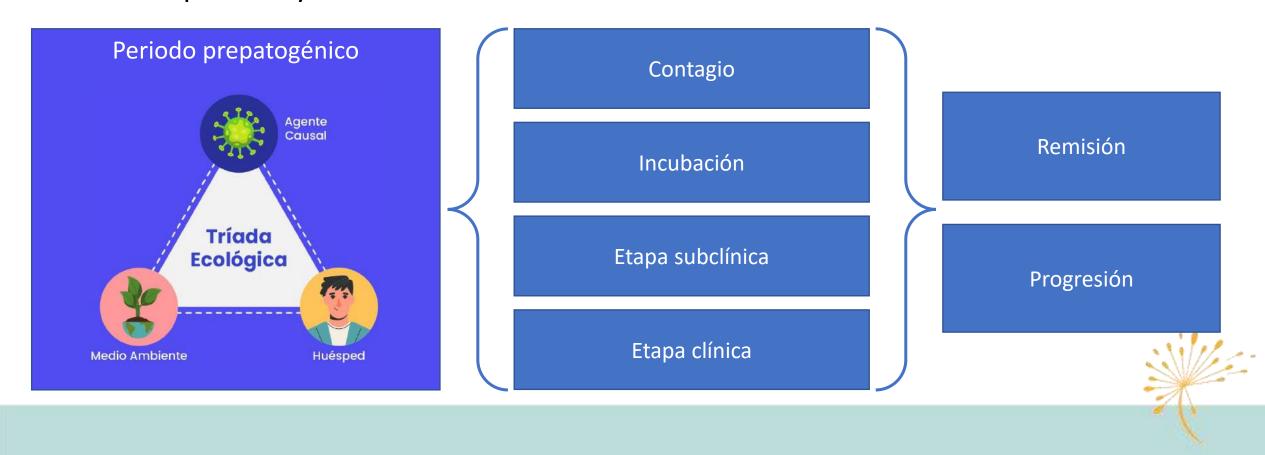

2. Epidemiología

Gráfico 1. Diez primeras causas de defunción en Colombia. Total, nacional – Años 2019- 2020 y 2021

Fuente: DANE, Estadísticas Vitales. pr. Cifras preliminares

Fig. 1.4. (a) Cumulative estimated excess deaths, and (b) cumulative estimated excess deaths and confirmed COVID-19 deaths, January 2020 to December 2021



Source: 194 Member States reports https://covid19.who.int/

3. Historia natural de la enfermedad

Conocer las distintas variables que alteran la cadena epidemiología de estas enfermedades, sobre todo los factores ambientales y determinantes sociales en salud nos permiten actuar de forma oportuna y acertada

4. Agente causal

	Virus	Bacterias	Hongos
	Rinovirus 28.6 %	Streptococcus Beta Hemolíticos	Aspergillus spp.
	SARS-CoV2 14.3 %	E. coli	
	Adenovirus	L. monocytogenes	
	Enterovirus	S. pneumoniae	
	Influenza A (H3N2)	M. pneumoniae	
	Parainfluenza	H. influenzae	

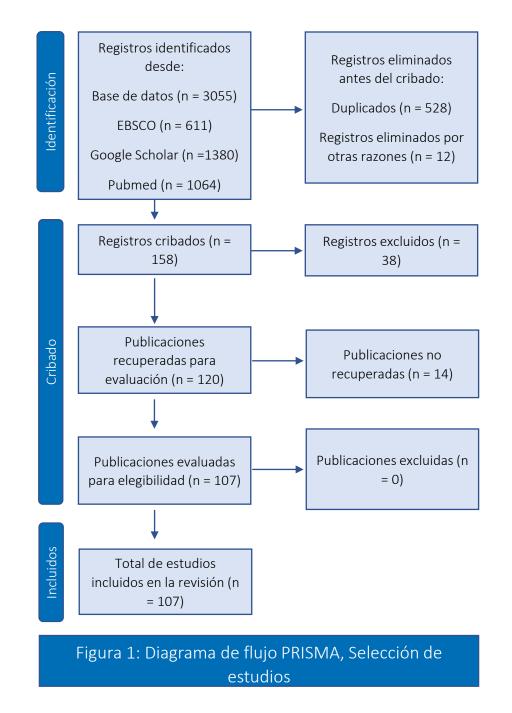
5. Medio ambiente, verdades y lecciones

- ✓ Los boletines de la OMS coinciden en que algunos factores de riesgo definitivos para la trasmisión son la alta densidad poblacional y la contaminación del aire (Rudan, 2008).
- ✓ La contaminación es un factor definitivo de la morbimortalidad.
- ✓ Los factores ambientales afectan la biología del agente causal y las vías de transmisión
- ✓ Las IRA son de importancia en salud publica por los virus emergentes y por los virus atípicos multimorbidos

6. ¿Cómo es el comportamiento de cada virus respiratorio con el medio ambiente?

Identificar las vías de transmisión de los virus asociados a las IRAs. Describir los factores ambientales y su asociación para la transmisión de las IRAs virales.

7. Metodología


- 1. Se realizó una búsqueda sistemática de la literatura en múltiples bases de datos
- 2. Se identificaron los virus y las variables ambientales a analizar
- Búsqueda de la información para agente viral
- 4. Búsqueda de la información de cada agente viral con cada variable ambiental

Ejemplo: "(Virus sincitial respiratorio) AND (Temperatura ambiental)".

- 5. Se filtraron los resultados según el modelo PRISMA.
- 6. Se analizaron en su totalidad 107 artículos.

Virus sincitial respiratorio (VSR)
Rinovirus (RV)
Influenza A
Parainfluenza virus
Coronavirus alfa (CoVa)
Coronavirus beta (CoVb)
Adenovirus (AV)
Enterovirus

Temperatura Ambiental
Humedad Relativa
Precipitaciones
Contaminación
Radiación Solar

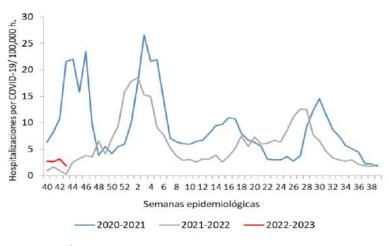
8. Resultados – Vía de contagio de cada virus

VIRUS	CONTACTO DIRECTO	SECRECIONES RESPIRATORIAS	AEROSOLES	FÓMITES
PIV	X	Χ		
VSR		Χ	X +	X
Rinovirus	X		X *	X
Influenza A	X	X	X	
Coronavirus alfa (CoVa)	X		Χ°	Х^
Coronavirus beta (CoVb)			X	X#
AV	X	X ^{&}	X ^{&}	Х

8. Resultados – Tipo de virus

2 grupos de virus: estacionales y los no estacionales

Virus estacionales*


Influenza, VSR y Coronavirus Humanos

Comportamiento reproducible con los cambios de temperatura durante el año

Virus no estacionales*

Adenovirus y Rinovirus

Se aíslan en todas las semanas epidemiológicas y un comportamiento estacional en cuanto a la severidad *Estacionales no hace referencia a las estaciones sino a la repetición de determinadas variaciones en alguna variable cada cierto período

SiVIRA, Vigilancia IRAs e IRAG 2022, España

8. Resultados – Vía de contagio de cada virus

	Virus estacionales	Virus no estacionales
Temperatura	90% de los casos ocurren con temperatura < 10°C	NR
Humedad relativa*	Humedades el 20-50% favorecen la transmisibilidad	Humedades del 80% favorecen su transmisibilidad
Precipitaciones	Genera el comportamiento bianual del VSR en países del trópico	Aumenta la transmisibilidad
Altura	NR	NR
Contaminación	NO2 aumenta la transmisibilidad	Aumenta la severidad, pero no la transmisibilidad
Radiación solar	<300KJ/m2/h favorecen la transmisibilidad	NR

9. Conclusiones

- ✓ Hay una asociación entre la temperatura y humedad relativa con la transmisión de los virus estacionales; estas variables aumentan la severidad de la enfermedad por los otros virus.
- Existe una relación clara entre la contaminación y la severidad de los cuadros clínicos por todos los virus.
- ✓ La importancia de conocer la asociación radica en que esto permite generar medidas adecuadas en salud pública y tomar acciones preventivas ante nuevos brotes.

9. ¿Y ahora? Próximamente

- ✓ Aplicación practica y comprobación de la teoría en Colombia con el fin de generar modelos predictivos y preventivos
- ✓ VARIABLES AMBIENTALES ASOCIADAS AL CONTAGIO DE CINCO MICROORGANISMOS AISLADOS EN LAS INFECCIONES RESPIRATORIAS AGUDAS EN COLOMBIA: UN ANÁLISIS MULTIVARIABLE MÁS ALLÁ DE LA COVID-19

GRACIAS

Sebastián Andrés Beltrán Prieto
Est.sebastian.belt@unimilitar.edu.co
+57 313 346 8726

REVISIÓN SISTEMÁTICA Resumen visual

OBJETIVOS

Identificar las vías de transmisión de los virus asociados a las IRAs.

Describir los factores ambientales y su asociación para la transmisión de las IRAs virales.

METODOLOGÍA

Se realizó una búsqueda sistemática de la literatura en las bases de datos. Se identificaron los virus y las variables ambientales a analizar.

identificaron publicaciones obteniéndose un total de 3.055 artículos, se filtraron según el modelo PRISMA (Figura 1) y se analizaron 107 artículos en su totalidad. Se determinaron las vías de transmisión de los virus elegidos para este estudio y se analizaron de forma independiente las variables ambientales y su asociación con la transmisión de cada virus.

DETERMINANTES AMBIENTALES ASOCIADOS CON LA TRANSMISIÓN DE LOS VIRUS DE LAS INFECCIONES RESPIRATORIAS AGUDAS

RESULTADOS

Se identificaron virus de transmisión estacional (Influenza virus, VSR y los Coronavirus Humanos no SARS-CoV2) y virus que aumentan la severidad de sus casos con el clima (Adenovirus, SARS-CoV2 y Rinovirus).

A menor temperatura y humedad la vida media de los virus aumenta. Hay asociación entre el aumento del material particulado y la tasa de contagio y de mortalidad (Tabla 1).

Tabla 1: Relación de las variables ambientales con la transmisión de los virus de las IRAs

	Virus estacionales	Virus no estacionales
Temperatura	90% de los casos ocurren con temperatura < 10°C	NR
Humedad relativa*	Humedades el 20-50% favorecen la transmisibilidad	Humedades del 80% favorecen su transmisibilidad
Precipitaciones	Genera el comportamiento bianual del VSR en países del trópico	Aumenta la transmisibilidad
Altura	NR	NR
Contaminación	NO2 aumenta la transmisibilidad	Aumenta la severidad, pero no la transmisibilidad
Radiación solar	<300KJ/m2/h favorecen la transmisibilidad	NR

CONCLUSIONES

Hay una asociación clara entre la temperatura y humedad relativa con la transmisión de los virus estacionales; estas variables aumentan la severidad de la enfermedad por los otros virus. Existe una relación clara entre la contaminación y la altura con la severidad de los cuadros clínicos por todos los virus.

La importancia de conocer la asociación radica en que esto permite generar medidas adecuadas en salud pública y tomar acciones preventivas ante nuevos brotes.