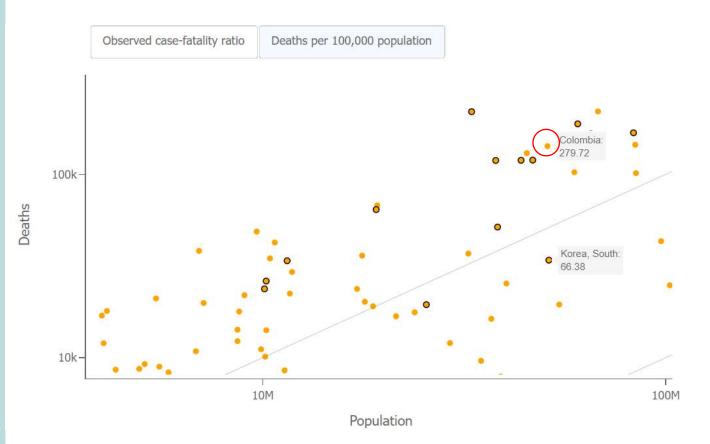


ASSESSING THE FILTRATION EFFICIENCY OF FACEMASK FILTER MATERIALS FOR THE PREVENTION OF COVID-19



Boris Galvis¹, David Monroy¹, Camilo Bernal², David E. Sierra², Carlos A. Sanchez², Néstor Rojas³

¹Chemical Engineering Program, Universidad de La Salle, Bogotá, Colombia. bgalvis@unisalle.du.co
²Gestiones y Soluciones Tecnológicas, Gesoltec S.A.S., Bogotá, Colombia
³Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogotá.

Motivation

- Colombia has been hit hard by covid -19, with 6,358,232 cases 142,329 deaths and a case fatality ratio of 2.2%
- Deaths per 100 k inhabitants are 4.2 times higher than countries of similar population

Source : The Johns Hopkins Coronavirus Resource Center (2023)

Motivation

infobae

ESPN

Cultura

Compartir

Newsletters

Colombia Últimas Noticias Coronavirus Colombia

COLOMBIA >

Covid-19 en Colombia: del 29 de enero al 4 de febrero se registraron 868 nuevos contagios

El informe del Ministerio de Salud también señaló que 12 colombianos fallecieron a causa de la enfermedad en la última semana

10 Feb, 2023

Covid-19 en Colombia: del 29 de enero al 4 de febrero se registraron 868 nuevos contagios. Infobae.

nature

Explore content V About the journal V Publish with us V Subscribe

<u>nature</u> > <u>news</u> > article

NEWS 01 February 2023

When will COVID stop being a global emergency?

The World Health Organization has decided the crisis isn't over yet – but it's at a transition point.

David Adam

 In 2023 COVID still an issue in the world and in Colombia

Motivation

- Facemasks are is still needed and will likely be a part of our day to day for years to come.
- Our study is aimed to assess the efficiency of face masks materials that are sold in Colombia.

Materials and methods

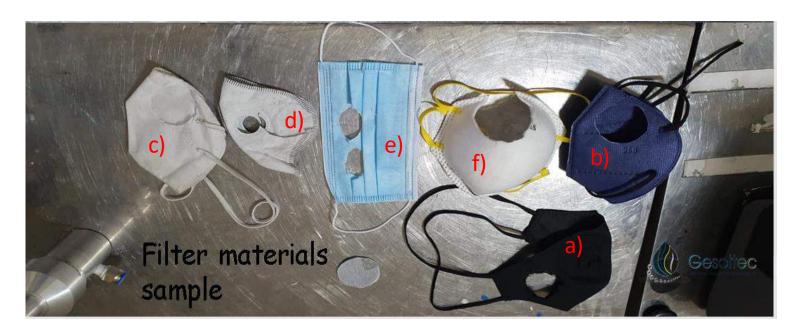


Fig 1. Mask Materials tested a) Homemade cotton mask b) N95 c) KN95 d) Cotton-polyester e) Surgical mask f) Certified N95

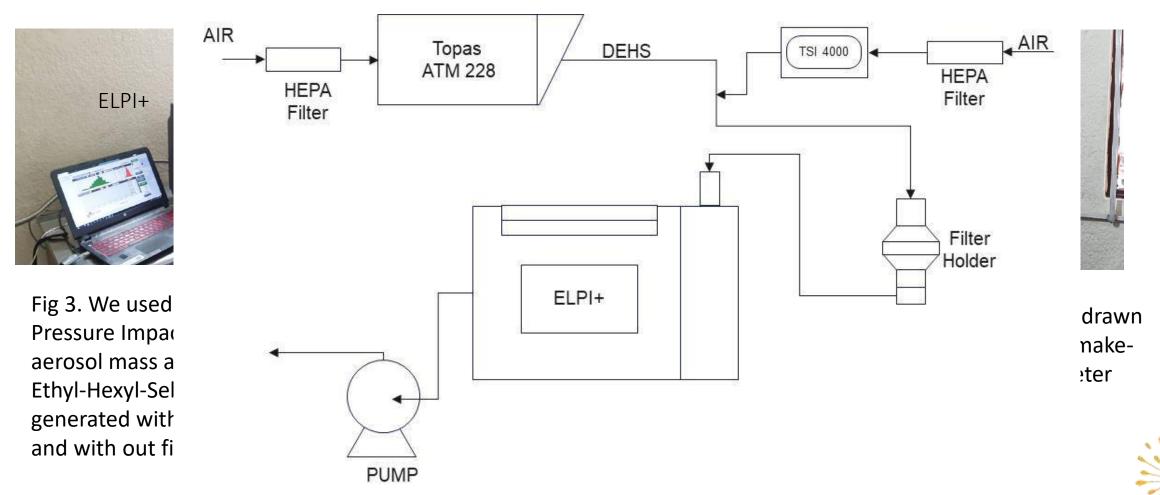
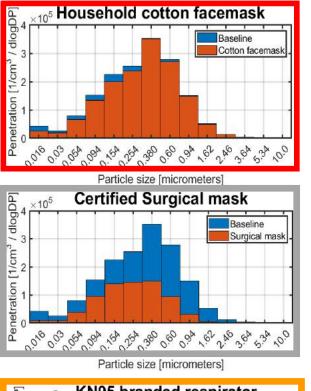
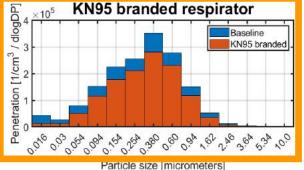
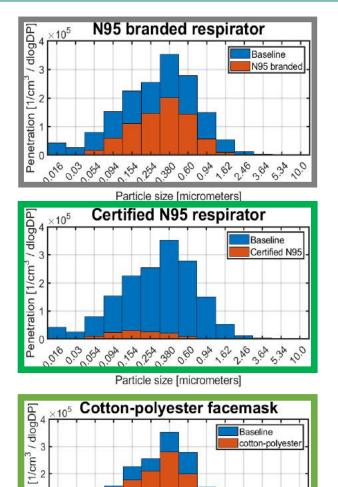


Fig 2. Filter materials were cut and placed on a filter holder for testing

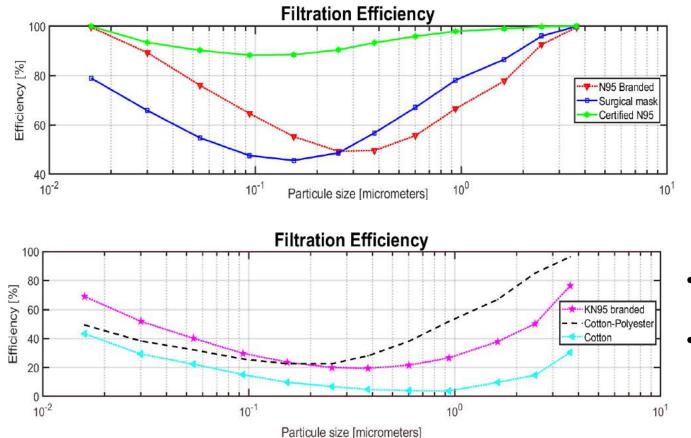

Materials and methods – Experimental Setup


Experimental set up



Results - Penetration by particle size

Penetration


Particle size [micrometers]

.

- The particle distribution generated with the TOPAS ATM (baseline in blue) had mean a particle number concentration of 117000 particles cm⁻³ with diameters between 18.6 nm to $1.91 \mu m$.
- The homemade mask didn't stop the aerosol. Almost complete penetration occurred.
- KN95 branded respirator and the cotton polyester mask did almost as bad as the homemade cotton mask
- The certified surgical mask and the N95 branded respirator had about 30% penetration and both stopped very small particles (< than 0.05 um)
- The N95 certified respirator sowed less than 5 % penetration as expected, il all sizes

Results - Filtration efficiency by particle size

- The mask filter materials had efficiencies between 19 and 95%.
 - The certified N95 respirator showed the best results, with a collection efficiency of 95%. Lowest efficiency was 90% for particles of about 0.1 um diameter
 - The N95 Branded Respirator and certified surgical mask showed similar efficiencies with 72 and 71%, respectively. The first been a better for smaller particles, less than 0.1 um in diameter
- The cotton-polyester filter had an efficiency of 52%.
- The KN95 and cotton masks showed the lowest efficiencies in the experiment, values of 38 and 19%, respectively.

How our results compare with other studies?

Author	Year	Effiency
Davies <i>et al.</i>	2013	Cotton T-shirt: 69.42%
		Scarf: 62%
		Tea towel: 83%
		Pillowcase: 61%
		Surgical: 96%
		Cotton mix: 74%
		Silk: 58%
Patel <i>et al.</i>	2016	N95:80-90%
		sealed N95: 100%
		Surgical mask: ~ 50%
Morais <i>et al.</i>	2021	N95: 98%
		Surgical: 89%
		Nonwoven: 78%
		Homemade: 20-60%
This study	2021	N95: 95%
		N95 branded: 72%
		Surgical mask: 71%
		Cotton-polyester: 52%
		KN95: 38%
		Cotton: 19%

- The certified N95 masks offers the best level of protection
- Surgical masks showed a moderate degree of protection, with collection efficiencies between 50-96%.
- Homemade mask masks, cotton masks and cotton-polyester masks are difficult to compare with other studies. However, it is possible to identify that this types of filter materials provide low levels of protection, with efficiencies between 19-74%.

- The efficiency of the different filter materials assessed varied between 19 to 95 % for particles between 18.6 nm to 1.91 μm.
- Cotton, cotton-polyester and KN95 masks sold in Colombia do not provide good protection for aerosols lower than 1 μm.
- The best filter materials are the ones used to make certified surgical and certified N95 masks, which have average collection efficiencies for aerosols below 1 µm of approximately 61% and 93%, respectively

Questions?

Más información

https://casap.science/

casap@casap.science

 \searrow