

Desarrollo y prueba de algoritmos de Machine Learning para procesar imágenes SEM-EDX

Boris Galvis, Angie Zambrano, David Restrepo, Olga Quintero, Néstor Rojas, Elena Montilla, José Duque

Presentador: Boris Galvis En marco del proyecto "Estimación de la polución urbana mediante el uso de mediciones y asimilación de datos en superficie, in situ y de detección remota (4DAir-MOLIS)".

es de todos

UNIVERSIDAD

Como podemos combinar técnicas de microscopia electrónica para atribuir cuantitativamente fuentes de material particulado urbano?

INTRODUCCION

Aplicando redes neuronales convolucionales (CNN) desarrollamos un clasificador de imágenes SEM/EDX de partículas de contaminación urbana que permita reducir tiempos e incrementar el numero de partículas analizadas.

METODOLOGÍA - Desarrollo Machine Learning

A

Predicted label: C

Se desarrollaron 5 modelos de 3 clases

- Desde cero

 TransferLearning
TransferLearning preentrenados con conjunto de datos ImageNet

MODELO	Total parameters	Trainable parameters	Non-trainable parameters
Desde ceros	12,097,860	12,097,860	0
VGG19	23,187,268	23,187,268	0
ResNet	23,508,548	8,196	23,500,352
MobileNet	4,370,884	7,172	4,363,712
EfficientNet	6,936,248	5,124	6,931,124

En los dos primeros modelos todos los parámetros fueron entrenables, Los tres últimos modelos se desarrollaron con una red neuronal pre-entrenada.

RESULTADOS INICIALES

MODELO	Exactitud
Desde ceros	0,10
VGG19	0,18
ResNet	0,57
MobileNet	0,32
EfficientNet	0,36

Los modelos de TransferLearning pre-entrenados con el conjunto de datos ImageNet, presentan los mejores resultados, modelos.

Campañas de muestreo

CIUDAD	UBICACIÓN	FECHA DEL MUESTREO
BOGOTÁ	Estación RMCAB—IDRD	10 a 17 de febrero de 2022
CALI	Estación DAGMA - Universidad del Valle	8 al 16 de marzo de 2022
	Estación Central—museo de Antioquia	05 al 12 de octubre de 2021 3 al 15 de noviembre de 2021
MEDELLÍN	Estación Tanque EPM - Girardota	05 al 12 de octubre de 2021 3 al 15 de noviembre de 2021
	Estación Tanque la Y	05 al 12 de octubre de 2021 3 al 15 de noviembre de 2021

Particle Vision

Die Partikelspezialisten

Las muestras de material particulado recolectadas en Bogotá, Cali y Medellín permitieron el análisis individual de 7420 partículas clasificadas en 6 grupos morfo-químicos

Biogénicas orgánicas	Metálicas	Minerales
Desgaste de llanta	Sales	Pintura rica en Ti

MODELOS FINALES

Análisis SEM/EDX

- Morfología
- Composición química

Segmentación en grupos morfológicos.

7420 partículas clasificadas en 6 grupos

imagenes SEMÉDX

6536 imágenes de partículas clasificadas en los 4 grupos que representan el 95 % de cada muestra Clasificador de imágenes (Machine Learnning)

RESULTADOS

- Los modelos que generan mejores resultados son los desarrollados con una red neuronal pre-entrenada con el conjunto de datos ImageNet. Epecificamente los modelos basados en ResNET y EfficientNet mostraron exactitudes de 85 y 80 % respectivamente.
- Las estaciones urbanas presentaron mayor presencia de partículas minerales y la estación rural de partículas biogénicas orgánicas.
- Las partículas de sal y de pinturas ricas en Ti no presentaron una presencia significativa en ninguna de las muestras recolectadas.

REFERENCIAS

- Zhou, W., Apkarian, R., Wang, Z. L., & Joy, D. (2007). Fundamentals of scanning electron microscopy (SEM). Scanning Microscopy for Nanotechnology: Techniques and Applications, 1-40.
- Mohammed, A., & Abdullah, A. (2018, November). Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania (Vol. 2018, pp. 7-9).
- Bell, D. C., & Garratt-Reed, A. J. (2003). Energy dispersive X-ray analysis in the electron microscope. Garland Science.
- Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET). doi:10.1109/icengtechnol.2017.8308186
- Sommer, F., Dietze, V., Baum, A., Sauer, J., Gilge, S., Maschowski, C., & Gieré, R. (2018). Tire abrasion as a major source of microplastics in the environment. Aerosol and Air Quality Research, 18(8), 2014–2028. <u>https://doi.org/10.4209/aaqr.2018.03.0099</u>
- <u>Rausch, J</u>., Jaramillo-Vogel, D., Perseguers, S., Schnidrig, N., Grobéty, B., & Yajan, P. (2022). Automated identification and quantification of tire wear particles (TWP) in airborne dust: SEM/EDX single particle analysis coupled to a machine learning classifier. Science of the Total Environment, 803. https://doi.org/10.1016/j.scitotenv.2021.149832
- National Aeronautics and Space Administration NASA. (1997) Cosmic Dust Catalog Volume 15.
- Hao, H., Guo, R., Gu, Q., & Hu, X. (2019). Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data. *Minerals Engineering*, 143(August), 105899. https://doi.org/10.1016/j.mineng.2019.105899
- Li, C., Wang, D., & Kong, L. (2021). Application of Machine Learning Techniques in Mineral Classification for Scanning Electron Microscopy Energy Dispersive X-Ray Spectroscopy (SEM-EDS) Images. Journal of Petroleum Science and Engineering, 200(November 2020), 108178. <u>https://doi.org/10.1016/j.petrol.2020.108178</u>
- Kharin, A. Y. (2020). Deep learning for scanning electron microscopy: Synthetic data for the nanoparticles detection. *Ultramicroscopy*, *219*(June), 113125. https://doi.org/10.1016/j.ultramic.2020.113125
- Phung, V.H.; Rhee, E.J. A High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification of Cloud Image Patches on Small Datasets. Appl. Sci. 2019, 9, 4500. https://doi.org/10.3390/app9214500
- Shao, L., P. Liu, T. Jones, S. Yang, and et all. (2022). "A review of atmospheric individual particle analyses: Methodologies and applications in environmental research". In: Gondwana Research (xxxx). doi: 10.1016/j.gr.2022.01.007. url: <u>https://doi.org/10.1016/j.gr.2022.01.007</u>
- Girão, A., G. Caputo, and M. Ferro (June 2017). "Application of Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS)". In: doi: 10.1016/bs.coac.2016.10.002. thermofisher (n.d.). Scanning electron microscopy: Electrons in SEM: Thermo Fisher Scientific US. url: https://www.thermofisher.com/co/en/home/materials-science/learning-center/applications / sem electrons.html#: ~: text=Backscattered%20electrons%20are%20reflected % 20back, electron % 20beam %20and%20the%20sample..
- Pipal, A. S., A. Kulshrestha, and A. Taneja (2011). "Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India". In: Atmospheric Environment 45 (21), pp. 3621–3630. doi: 10.1016/j.atmosenv.2011.03.062.url: https://dx.doi.org/10.1016/j.atmosenv.2011.03.062
- Kavuran, G. (2021). "SEM-Net: Deep features selections with Binary Particle Swarm Optimization Method for classification of scanning electron microscope images". In: Materials Today Communications 27 (February), p. 102198. doi: 10.1016/j.utcomm. 2021.102198. url: https://doi.org/10.1016/jmtcomm.2021.102198
- Hao, H., R. Guo, Q. Gu, and X. Hu (2019). "Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data". In: Minerals Engineering 143 (August), p. 105899. doi:10.1016/j.mineng.2019105899. url: https://doi.org/10.1016/j.mineng.2019.105899

Más información

tps://casap.science/

 \square

casap@casap.science