

ESTUDIO DEL MATERIAL PARTICULADO INHALABLE (PM_{2.5}) RESUSPENDIDO Y SU RELACIÓN CON LA CALIDAD DEL AIRE

Presentador

IQ Alejandro Marín Sánchez MSc Universidad Pontificia Bolivariana

Introducción

- El material particulado resuspendido (MPRSS) que se genera por acción eólica en la superficie de las vías, como el desgaste de los vehículos (frenos y neumáticos) aportan a las estaciones de monitoreo de la calidad del aire como PM_{2.5}
- El PM_{2.5} constituye entre el 11 y el 30% del PM₁₀ encontrado en el material particulado de las vías pavimentadas y suelo

(Ho, Lee, Chow, & Watson, 2003)

PETROL

Antecedentes

- Estudio de factores de emisión
- Estudio de alternativas de medición MPRSS
- Caracterización química
- Variables de influencia en el MPRSS

Diseño de Experimentos – Montaje de Equipo

Toberas

Selección de Puntos

- Cobertura Vegetal

Material Particulado

Factores de Emisión

Desarrollados en función de la velocidad del viento

Emisiones de PM_{2.5} Resuspendido

Emisión de 150 ton/año

Influencia Variables

Mayor emisión de PM_{2.5} en vías de bajo flujo vehicular

4

1

Estimación de PM₂₅

Resuspendido

2

3

Periodos de Contingencia

En el segundo periodo de contingencia ambiental se presenta mayor emisión de $PM_{2.5}$

e Petrol

 $E_{PM_{2.5}} \Big|_{Flujo\ alto} \left(\frac{g}{m^2 h} \right) = -0.116 \, V_{viento} + 3.078$

 $E_{PM_{2.5}} \Big|_{Flujo\ bajo} \left(\frac{g}{m^2 h} \right) = 0.028\ V_{viento} + 2.618$

Resultados – Caracterización Química

Futuro sostenible

Contenido de Nitratos

Relación de CO/CE altos

Reducción en un 95% del sulfatos por el aumento en la calidad del combustible

Mayor concentración en vías de bajo flujo vehicular y presencia del transporte público colectivo

Mayor producción de aerosoles orgánicos secundarios sedimentado en el material particulado

Resultados – Caracterización Morfológica

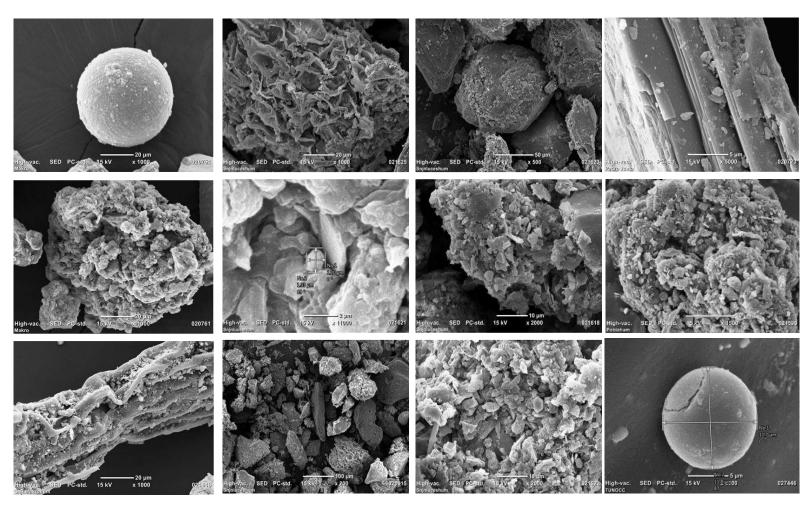
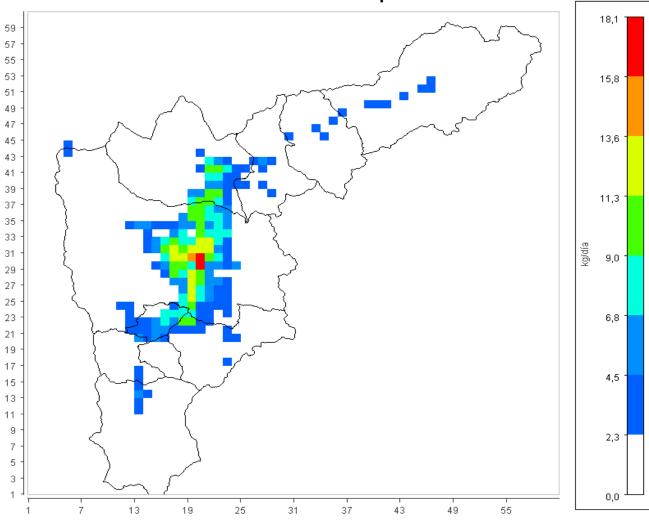


Figura 1. Morfología del PM_{2.5} Resuspendido en el Valle de Aburrá

Partículas aglomeradas ricas en calcio con formas pentagonales

Partículas inferiores a 15 μ m y hasta un diámetro de 320 nm


Presencia de hollín, ceniza

Resultados – Modelización del PM_{2.5} Resuspendido – Mapa de Emisiones

Emisión diaria PM2.5 resuspendido

Figura 2. Mapa de emisiones de $PM_{2.5}$ resuspendido en función de la velocidad del viento

Con la ejecución del Modelo de Inventario Dinámico para la Resuspensión Aerodinámica del Material Particulado (MID-RAMPA)

 Caracterización de la malla vial

- ✓ Niveles de actividad
- ✓ Factor de emisión
- ✓ Perfil horario

Resultados – Modelización del PM_{2.5} Resuspendido – Aporte a la Calidad del Aire

0.25

0.00

10

15

20

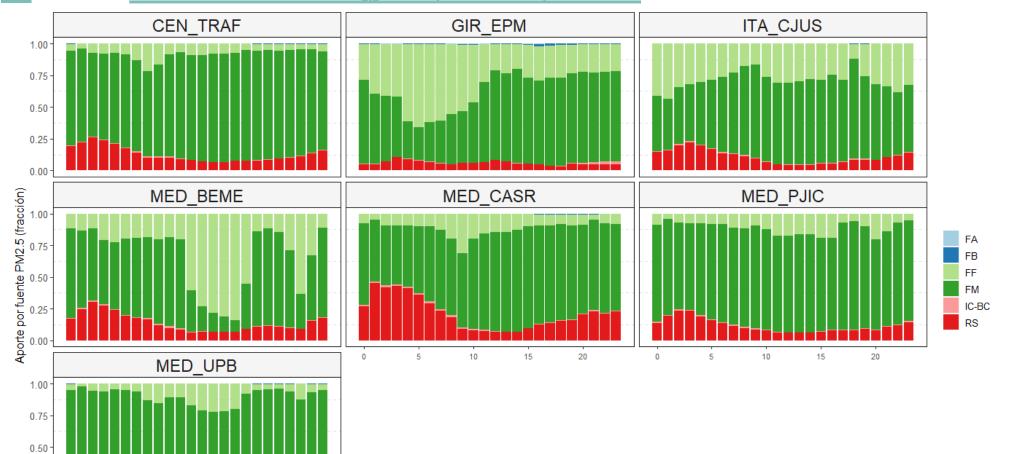
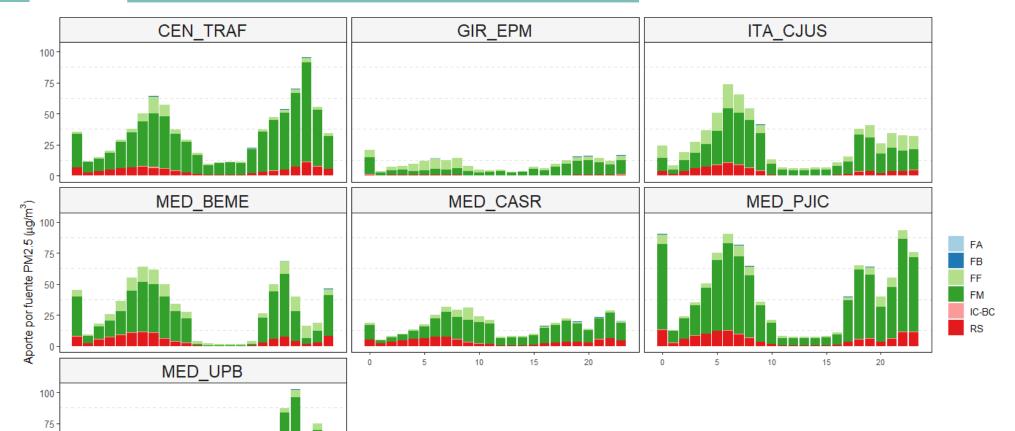


Figura 3. Aporte al PM2.5 de las fuentes de emisión globales en puntos receptores del Valle de Aburrá

hora

Resultados – Modelización del PM_{2.5} Resuspendido – Aporte a la Calidad del Aire



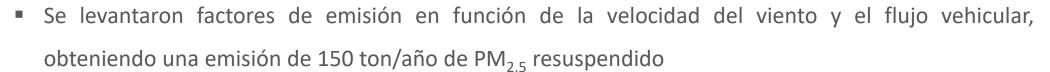


Figura 4. Concentración del PM_{2.5} de las fuentes de emisión globales en puntos receptores del Valle de Aburrá

hora

Conclusiones

- A una menor velocidad del viento y en vías de bajo flujo vehicular se presenta mayor emisión de PM_{2.5} resuspendido
- Los nitratos tienen una mayor concentración en vías de bajo flujo vehicular con alta presencia del transporte público colectivo y de forma general, el calcio es un elemento mayoritario en el material particulado del Valle de Aburrá

 El perfil horario del material particulado resuspendido muestra que, tanto en las primeras horas del día como en las horas de la noche, se presenta una mayor emisión del PM_{2.5} resuspendido

La concentración del $PM_{2.5}$ resuspendido es inferior a 12 μ g/m³ para el día sábado e inferior a 5 μ g/m³ el día domingo. Para un día laboral, aporta un máximo del 35% del $PM_{2.5}$ total

Contrato de Ciencia y Tecnología 1031/2020

Maria Victoria Toro Gómez
Grupo en Investigaciones Ambientales GIA
Universidad Pontificia Bolivariana
Medellín, Colombia
victoria.toro@upb.edu.co

Ana Zuleima Orrego Guarín
Subdirección Ambiental
Área Metropolitana del Valle de Aburrá
Medellín, Colombia
ana.orrego@metropol.gov.co

Alejandro Marín Sánchez
Grupo en Investigaciones Ambientales GIA
Universidad Pontificia Bolivariana
Medellín, Colombia
alejandro.marinsa@upb.edu.co

Martha Yolanda Herrera Zapata
Centro de Innovación y Tecnología-ICP
Ecopetrol S.A
Piedecuesta-Santander - Colombia

martha.herrera@ecopetrol.com.co

