

Climate Change and Urban Health in Latin America

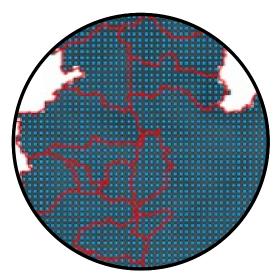
"Contaminación del aire, características urbanas e impactos en la salud en América Latina"

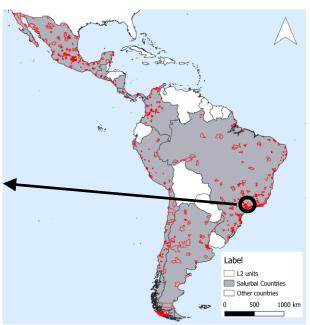
Nelson Gouveia Departamento de Medicina Preventiva Faculdade de Medicina Universidade de Sao Paulo ngouveia@usp.br

Latin América

- mayoría de las ciudades no cuentan con monitoreo de la calidad del aire
- ¿media anual de PM_{2,5} y NO₂ cumple con las directrices de la OMS?
- ¿Cuántos y quiénes están expuestos?
- ¿Qué factores urbanos influyen en la calidad del aire?
- ¿Cuáles son los impactos en la salud?

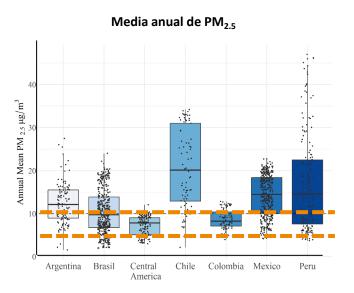
Métodos


Información sobre la contaminación del aire


- PM_{2.5} y NO₂ estimados a partir de mediciones satelitales
- Ponderación por mediciones de estaciones de monitoreo y modelo de transporte geoquímico aplicado
- Medias anuales y mensuales
- Formato de cuadrícula donde cada celda de la cuadrícula representa 0,01 grados por 0,01 grados (~ 1.1km por 1.1km)

Datos de Contaminación del Aire a Partir de Lecturas de Satélite

Los puntos azules muestran lecturas satelitales de la contaminación del aire para áreas de 1 km x 1 km en São Paulo.



Métodos factores de países, ciudades y "subciudades"

- Densidad de población
- PIB
- Fragmentación (número de áreas urbanas/superficie total)
- Precio del gas (ajustado al salario mínimo)
- Transporte público (BRT + metro + tranvía/superficie)
- Tasa de motorización
- Densidad de intersecciones (densidad de nodos del conjunto de nodos con más de una calle que emana de ellos)
- Índice de retrasos en el viaje/congestión
- Verdor (NDVI)

Contaminación del aire: exposición

371 ciudades para PM_{2,5}

Gouveia, Kephart et al. *Science of the Total Environment* (2021) (https://doi.org/10.1016/j.scitotenv.2021.145035)

Media anual de NO₂

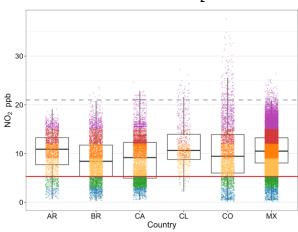


Figure 3. Annual ambient NO₂ within 47,187 urban neighborhoods in Latin America. Each dot represents annual NO₂ in one neighborhood. The red horizontal line represents the 2021 WHO guidelines for annual NO₂ (10 $\mu g/m^3 \approx 5.3$ ppb). The grey dashed line represents the pre-2021 guideline for annual NO₂ (40 $\mu g/m^3 \approx 21$ ppb), for reference. AR=Argentina; BR=Brazil; CA=cities in the Central American countries of Costa Rica, Guatemala, and Panama; CL=Chile; CO=Colombia; MX=Mexico.

>47 mil barrios para NO₂

Kephart, Gouveia et al. *Lancet Planet Health* (2023) (https://doi.org/10.1016/s2542-5196(23)00237-1)

Contaminación del aire: factores associados – PM_{2.5}

Table 3
Mean differences in annual mean $PM_2 \le \mu g/m^3$ concentrations at the sub-city level associated with a 1 SD higher value of city and sub-city-level characteristics.

	Univariable	Full model	Full model with motorization rate ^c	
	Estimate (95% CI)	Estimate (95% CI)	Estimate (95% CI)	
	City fa	actors		
GDP per capita	1.00 (0.52, 1.47)	0.87 (0.43, 1.32)	0.65 (0.22, 1.09)	
Population	2.57 (1.49, 3.65)	0.01(-1.54, 1.57)	-0.71(-2.60, 1.18)	
Population growth %, 2010 to 2015	-0.13 (-0.55, 0.30)	-0.29 (-0.66, 0.09)	-0.06(-0.45, 0.32)	
Mass transit infrastructure ^a	1.17(-0.19, 2.53)	-1.91(-3.39, -0.42)	-1.87(-3.40, -0.34)	
Gas cost	-0.17 (-1.68, 1.33)	-0.09(-1.74, 1.56)	-1.75(-4.36, 0.86)	
Patch density ^b	0.47 (-0.31, 1.25)	0.64 (-0.18, 1.46)	0.67 (-0.21, 1.56)	
Population density	-0.71 (-1.41, -0.01)	-0.90 (-1.60, -0.20)	-0.84(-1.87, 0.18)	
Travel delay index	1.05 (0.13, 1.97)	0.26 (-0.70, 1.22)	-0.62(-2.09, 0.84)	
Motorization rate	1.55 (0.93, 2.18)		0.78 (0.12, 1.43)	
	Sub-city	, factors		
Intersection density	1.92 (1.70, 2.14)	1.91 (1.65, 2.17)	1.96 (1.67, 2.25)	
Greenness	-1.39(-1.72, -1.07)	0.13 (-0.23, 0.49)	0.06(-0.34, 0.46)	

Note: figures in bold are statistically significant (p < 0.05).

Gouveia, Kephart et al. Science of the Total Environment (2021) (https://doi.org/10.1016/j.scitotenv.2021.145035)

^a Binary presence or absence of mass transit infrastructure

^b Measure of urban fragmentation that is additionally adjusted for z-standardized % built-up area.

^c Based on subsample with 241 cities.

Contaminación del aire: factores associados - NO₂

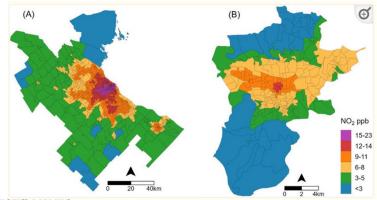


Table 3. Mean differences in neighborhood ambient NO₂ concentration (ppb) associated with a one-unit z-score increase in neighborhood- and city-level features in 47,187 urban neighborhoods in Latin America.

		Univariable		Multivariable (all)	
		Estimate	95% CI	Estimate	95% CI
	Population density*	0.61	0.58 to 0.65	0.06	0.04 to 0.08
Neighborhood- Level	Education*	1.80	1.77 to 1.84	0.64	0.61 to 0.67
	Intersection density*	0.56	0.53 to 0.59	0.02	-0.01 to 0.04
	Greenness*	-2.84	-2.87 to -2.82	-2.22	-2.25 to -2.19
	Distance from city center*	-1.79	-1.82 to -1.76	-0.87	-0.90 to -0.85
City-level	Population density*	0.47	0.10 to 0.84	0.34	0.06 to 0.63
	Education*	1.55	1.12 to 1.98	-0.05	-0.33 to 0.42
	Intersection density*	0.63	0.33 to 0.93	0.08	-0.15 to 0.30
	Greenness/vegetation*	-0.88	-1.16 to -0.61	0.08	-0.14 to 0.30
	Population size*	0.76	0.53 to 1.00	0.31	0.11 to 0.51
	GDP*	0.21	-0.05 to 0.47	-0.04	-0.23 to 0.16
	Congestion*	1.33	0.99 to 1.68	0.55	0.23 to 0.87

Kephart, Gouveia et al. *Lancet Planet Health* (2023) (https://doi.org/10.1016/s2542-5196(23)00237-1)

Características de la ciudad y niveles de contaminación del aire

Ciudades más grandes

Mayor PIB per cápita

Mayor tasa de motorización

Mayor congestión vehicular

Mayor densidad de intersecciones

mayor contaminación

Mayor densidad de población*

Más espacios verdes

Presencia de transporte público

Distancia del centro de la ciudad

menor contaminación

Associación entre PM_{2.5} y mortalidade cardiovascular e respiratoria entre adultos

- 337 ciudades de 9 países
- PM_{2.5} mensual (2009-2015)
- Temperatura (ERA5-Land)
- Medidas ponderadas por población
- Mortalidad por ECV/Resp por subgrupos de sexo y edad (20-39, 40-59 y 60+ años)

- Modelos de Poisson específicos de cada ciudad, ajustados por estacionalidad, tendencia a largo plazo y temperatura.
- Términos de interacción entre los cambios en PM2.5 y la edad.
- Estimaciones combinadas específicas de cada ciudad mediante una metarregresión de efectos aleatorios.

Resultados

Estimated percent change in mortality (%) associated with 10 μg/m³ increase in PM_{2.5} by age group, 2009–2015 (n = 28,308 city-months from 337 cities).

	Both sexes		Males		Females	
	Change (95 % CI)	P-value	Change (95 % CI)	P-value	Change (95 % CI)	P-value
Cardiovascular						
All age groups	1.3 (0.4,2.2)	0.005	2.2 (1.1,3.3)	< 0.001	0.3(-0.9,1.5)	0.62
		0.002		< 0.001		0.54
●20-39	-0.4(-2.5,1.6)		0.1 (-2.3, 2.7)		-0.5(-3.7,2.9)	
•40-59	0.4(-0.9,1.8)		1.1 (-0.5, 2.7)		-0.5(-2.0,1.1)	
•60+	1.5 (0.6,2.4)		2.5 (1.4,3.6)		0.4 (-0.8,1.6)	
Respiratory						
All age groups	0.9(-0.6,2.4)	0.22	1.3(-0.6,3.3)	0.17	0.4(-1.3,2.2)	0.62
		0.06		0.13		0.20
●20-39	1.1 (-2.3,4.6)		2.0 (-2.3,6.5)		0.7 (-5.7,7.5)	
•40–59	2.6 (0.7,4.6)		2.9 (0.4,5.5)		3.0 (0.2,5.8)	
•60+	$1.1 \; (-0.4, 2.5)$		1.8 (0.0,3.6)		0.3 (-1.5, 2.1)	

Model included age (3 categories; 20-39, 40-64, 65+) + Interaction term between age and change in $PM_{2.5}$ + Time (seasonality; 12 months as categorical) + Time (overall trend; calendar month) + Monthly temperature (restricted cubic spline with knots at 10th, 75th, and 90th percentiles of city-specific distribution). Note: For age-stratified estimates, the global p-value comes from a 3 degrees of freedom test where the null hypothesis is that all age coefficients are equal to zero.

Gouveia et al. Sci Total Environ. (2024) https://doi.org/10.1016/j.scitotenv.2024.171073

Conclusiones

- Se analizaron 3.026.861 muertes cardiovasculares y 1.222.623 muertes respiratorias
- La población del estudio representa el 41 % de la población total de América Latina y el Caribe
- Un aumento de 10 μg/m³ en el PM_{2.5} mensual se asocia con un aumento del 1,3 % (0,4 a 2,2) en la mortalidad por ECV
- Asociación marginalmente significativa con la mortalidad respiratoria (0,9 % [IC del 95 %: -0,6 a 2,4])
- Los riesgos fueron mayores en los hombres, y la asociación con la mortalidad por ECV fue más fuerte a edades más avanzadas.

